Mild
$16 \times 10=$
$41 \times 10=$
$37 \times 100=$
$12 \times 100=$
$340 \div 10=$
$520 \div 10=$
$700 \div 100=$
$800 \div 100=$
$17 \div 10=$
$672 \div 100=$

Spicy

$$
34 \times 10
$$

$$
34 \times 100
$$

3.4×10
3.4×100
$650 \div 10$
$650 \div 100$
$72 \div 10$
$7 \div 10$
$800 \div 100$
$80 \div 100$

Hot
$[4 \times 10 \times 10=4 \times \square$
$4.5 \times \square=4.5 \times 10 \times 10$
$65 \times 100 \div 10=65 \times \square$
$3.7 \times \square \div 10=3.7 \times 10$
$280 \div 10 \div 10=280 \div$
$600 \div \square \div 10=6 \div 10$
$760 \div 100 \times 10=760 \div \square$
$0.7 \times 100 \div \square=0.7 \times 10$

Challenge

Mild

$$
\begin{array}{ll}
4 \times 100= & 2400 \div 100= \\
75 \times 10= & 68 \div 10= \\
21 \times 1000= & 350 \div 1000= \\
100 \times 33= & 9 \div 10= \\
60 \times 10= & 9 \div 1000=
\end{array}
$$

Spicy

$$
\begin{array}{ll}
15 \times 10 \div 100 & 1000 \times \ldots=65800 \\
6 \div 100 \times 1000 & 3.7 \times \ldots=370 \\
6 \div \ldots=0.6 & 2800-\ldots=2.8 \\
\times 100=4500 & 0.03 \times \ldots=3
\end{array}
$$

$0.74=74 \div$ \qquad

Hot
1 Put these calculations in order from smallest to biggest.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 100 \times 540 & 5.4 \times 1000 \div 10 \div 5400 \div 1000 & 540 \div 10 \\
\hline
\end{array}
$$

2 By using a number from column A, an operation from B and a

A	B	C
7	\times	1
70		10
700		100
7000		
		1000

Can you find a path from 6 to 0.06 ?
You are not allowed to make diagonal moves.

6	$\times 10$	$\times 10$	$\div 100$
$\div 10$	$\times 100$	$\times 100$	$\div 10$
$\times 10$	$\div 10$	$\div 1000$	$\div 100$
$\div 1000$	$\times 1000$	$\times 100$	0.06

Challenge:

Who is correct?

Amir

Explain why.

Mild

Reasoning - Multiplying and Dividing by 10, 100 and 1000

Here are four cards.

Use a card to complete each calculation. You can use a card more than once.

x 100	$\div 10$	$\times 10$

$27 \square=270$
$9 \square=0.9$
12

$9 \square$
$=900$
12

27
$=2700$
$9 \square$
$=90$
12
$=120$

Spicy

Reasoning - Multiplying and Dividing by 10, 100 and 1000
Here are six cards.

Use a card to complete each calculation. You can use a card more than once.

Hot

Here are six cards.
Use a card to complete each calculation. You can use a card more than once.

Extension

$7 \times 10 \times 10 \times \underset{\sim}{\aleph} \times 10=21,000$

What do the symbols represent?

Which calculations are correct? Which are incorrect? Explain why.

Thursday I can recognise hundredths

Mild

Partition these fractions into tenths and hundredths

5. Between 6.2 and 6.4 :
$\mathbf{1 , 3 , \mathbf { 6 }}$

6. Between 1.7 and 1.9 :
$\mathbf{8}, \mathbf{1}, \mathbf{9}$

1. Between 4.6 and 4.7:

-1
\bigcirc
+
τ

4	7	0	1

$\varepsilon^{\prime} \tau{ }^{\prime} 9$ ' \boldsymbol{z}
: LI pud GI uวamłวя '†

$8^{\prime} S^{\prime} L{ }^{\prime} \varepsilon$

:โ\& pun 6 乙 นวәмұәg '乙

$1,0,3,5$
6. Between 61 and 63 :

$$
\begin{aligned}
& \text { 7. Between } 43 \text { and } 45 \text { : } \\
& \mathbf{7 , 4 , 5 , 4}
\end{aligned}
$$

Mild

Convert the following fractions to their equivalent decimals. The first one has been done for you.

$$
\text { 1. } \frac{76}{100}=0.76
$$

10. $\frac{70}{100}=$ \qquad
11. $\frac{49}{100}=$ \qquad
12. $\frac{44}{100}=$ \qquad
13. $\frac{20}{100}=$ \qquad
14. $\frac{90}{100}=$ \qquad
15. $\frac{80}{100}=$ \qquad
16. $\frac{42}{100}=$ \qquad
17. $\frac{66}{100}=$ \qquad
18. $\frac{21}{100}=\square$
19. $\frac{14}{100}=$ \qquad 15. $\frac{65}{100}=$ \qquad
20. $\frac{84}{100}=$ \qquad
21. $\frac{76}{100}=$ \qquad
22. $\frac{16}{100}=$ \qquad
23. $\frac{81}{100}=$ \qquad
24. $\frac{30}{100}=$
25. $\frac{25}{100}=$ \qquad

Spicy
Convert the following fractions to their equivalent decimals. The first one has been done for you.

$$
\begin{aligned}
& \text { 1. } \frac{8}{100}=0.08 \quad \text { 11. } \frac{24}{100}= \\
& \text { 2. } \frac{40}{100}=\text { 12. } \frac{48}{100}= \\
& \text { 3. } \frac{29}{100}= \\
& \text { 4. } \frac{45}{100}= \\
& \begin{array}{l}
\text { 13. } \frac{9}{100}= \\
\text { 14. } \frac{65}{100}=
\end{array} \\
& \text { 15. } \frac{22}{100}= \\
& \text { 16. } \frac{69}{100}= \\
& \text { 6. } \frac{7}{100}= \\
& \text { 5. } \frac{20}{100}= \\
& \text { 7. } \frac{99}{100}= \\
& \text { 17. } \frac{76}{100}= \\
& \text { 18. } \frac{82}{100}=
\end{aligned}
$$

8. $\frac{33}{100}=$ \qquad
9. $\frac{50}{100}=$ 19. $\frac{25}{100}=$ \qquad 20. $\frac{65}{100}=$
10. $\frac{70}{100}=$

Hot

Convert the following fractions to their equivalent decimals. The first one has been done for you.

1. $\frac{160}{100}=1.6$
2. $\frac{124}{100}=$
3. $\frac{60}{100}=\square$
4. $\frac{48}{100}=$
5. $\frac{43}{100}=\square$
6. $\frac{73}{100}=$
7. $\frac{129}{100}=$
8. $\frac{7}{100}=$
9. $\frac{99}{100}=$
\qquad
10. $\frac{2}{10}=$ \qquad
11. $\frac{5}{50}=$ \qquad
12. $\frac{70}{100}=$
13. $\frac{9}{100}=$
14. $\frac{165}{100}=$
15. $\frac{22}{50}=$
\longrightarrow
